
Numerical Quadrature Over a Rectangular 
Domain in Two or More Dimensions 

Part 3. Quadrature of a Harmonic Integrand 

By J. C. P. Miller 

1. Introduction. In Part 1 [1], ?5, formula (B), ?7, formula (B'), and in ?9; 
also in Part 2 [2] in several places, we have seen how the error term is very much 
reduced if the integrand f(x, y) is a harmonic function, that is, if V2f = 0. In this 
note we pursue further this special case, in which especially high accuracy is at- 
tainable with few points. 

It may not be often that the integrand will have this special form, but it seems 
worthwhile to develop a few of the interesting formulas. We start by obtaining 
expansions for n variables, and more extensive ones for two variables, and then 
obtain and consider special quadrature formulas. 

2. Expansions. As in Part 2 [2] ?2, we develop f(x1, x2, * * n, xn) as a Taylor 
series in even powers of each of the variables xr . Then, using VAfo = 0 whenever it 
is applicable, we obtain 

J = I/(2h )n = (2h)f (f ) f(xI) X2 , * Xn) dxI dx2 dXn 

h4 4 4 h+ 16 6 h8/16 8 192 8 fo 

(2.1) h'0 /128 ,4 6 + 1280 10 VO + ifo - 36 
1!3 3 / 

h2 (64 12 4096 12 + 61184 )48 707584 12 

+13 7 35 105 105 / 

where, as before, extended, 

(2.2) fo = 
A d 36f = af f o 

Q8fo a8fo 
X,249z' 

2 ~ ox,2(9X8'2fXt2 oxr2OX8'2OXt2f9Xu2 

etc., the summations extending over all possible combinations of r, s, t, *. with 
no two equal. 

Labelling the symmetrical sets of points as in Part 2, we have likewise the ex- 
pansions for sums of values of f over the sets 
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(2.31) 0 fo 

4h4a44o 6h6a6 36f +4h8a8 8 28f (2.32) a (a) 2nfo - __ __2_ _ 

- 10hlOa ( 436_ ;P 10)fo 
10! 

12h (2a2 12 - 3:512 

- 6aD4Q8 + 68'2)fo + 

(2.33) f(b) 2n(n- 1)fo - 8h4b (n - 4)fo + 12h6b6 ( 16) 6 

8h 8b8 a8Q f + 8!I {(n + 6)D8 - 2(n - 64)Q }fo 

_ 20hl'b'0 {(n - 4) a) 436 _ (n - 256)(1"0}fo 
10 ! 

4h'12b12 a1 1 
_ 12!b {2(n - 34)oj2 - 3(n + 362)cS2 

-6(n - 728)a54Q8 + 6(n - 1024) '2}fo + *. 

(2.34) y(c, d) 4n(n - 1)fo - 8h4 {(n-l)(c + d4 6 d 
4! 6 

1 {(n 6 )c 4 cd}Df 

+ 61! {(n -)(c + d)-15c2d2(c2 + d2)}c36fo 

+ 8h (n 8 + d8) -28c2d2(c4 + d4) + 704d4}8 

- 2{(n - 1)(c8 + d8) - 28c2d2(c4 + d4) - 70c4d4}Q8]fo 

(2.35) E~~e) 
48h 4e4 

(2.35) e (e ) -3 n (n-l ) (n -2)fo _ !- (n --2) (n-7) Vffo 3 4!1 

+ 12h.e (n2 - 33n + 122)36fo 

8h8e8 D 
+ 8! {(n -2) (n + 13)D8 - 2 (n2 -129n + 1094) Q8 }fo 

We recall that 0 is the origin, or centre of the square, a(a) includes all points with 
one coordinate ?ah and the rest zero, p(b) has two coordinates each independently 
?bh and the rest zero, ly(c, d) has one coordinate ich, another Idh and the rest 
zero, and finally E(e) has three coordinates each independently ieh with the rest 
zero. 
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3. Expansions over a Square. Such expansions are simpler since 36fo, Q8fo etc., 
are absent. They can be obtained by analysis with the detached operators-in 
particular O; we proceed to obtain expansions with general terms. 

If F(z) = u + iv is a function of a complex variable z = x + iy then both 
u and v are harmonic functions satisfying D,24 + Dy24 = 0. Likewise, if ut is a 
harmonic function, it can be shown that v exists such that u + iv is a function of 
a complex variable. We then have 

DYF = iF' = iDZF 

and 

(3.1) AA = oD2 = iD 2 = -iD . 

In order to develop expansions we therefore substitute 

(3.2) DX = i-12 DV = il/2S 

Consider, firstly 

(3.3) J =(2hY2I ff(x, y) dx dy = 1 
h h W ,D 

.Lt f,8 Zd 4h'D D (e Ds- ehDz) (1&DU -heD )fo 

The operator is 

sinh hD: sinh hD_ sinh i -1/2hi sinh i 12hhD 
h2D, DV h2j2 

1 cosh (il"2 + i-12)hhi - cosh (il"2 i-1/2)h) 
(3.4) 2 h2')? 

1 cosh V-/h O - cos \hj 
L ~ ~2 h2j)2 

whence 

(3.5) J = 2 + h 4 + 2 h f)8 + + 2 h 4r + 61 1 ++ (4r +2)j 
Likewise 

X1 f(X YaY) = (ehD + eahD. + eahDV + eahD V)fo a (a) 
= 2 (cosh ahD. + cosh ahD,)fo 

= 2 (cosh i-'12ah5D + cosh i12 ahD)fo 
(3.6) ah ah 

= 4 cosh X O cos 5) fo 

d4 a 8h88 + +(l a 4rh 4r ~+.l = 4 [ 8! 4 * *+ (14 r)! 
Vr + fo 

and 

f(xfl y#) = 4 cosh bhD, cosh bhDy fo 
0 (b) 

= 4 cosh i-12bhMD cosh i12bhMD fo 

(3:7) = 2 (cosh bhVD + cos bhv'120)fo 

| = 4 1 + ~~~~2 A 
4 

5)4 + 2 b 8h 5)8 + ... + 2 2br )hr Vr + ... fo. 
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We shall not use all the expansions given above in the present note, but it 
seems useful to set out the collected results for future use. 

4. Lattice-point Formulas over a Square. We consider first formulas in two 
variables, and start with 9 points, putting a = b = 1 and using the sets 0, a(1), 

f(1). We write 

(4.1) J = I/4h2 = Aof(0, 0) + E A af(xa , yM) + E A1f(x# , y#) 
using (xa, y,) etc. as typical sets of coordinates. 

Using (3.5) to (3.7), we equate coefficients of O4rfo, r = 0(1)2. This gives 

fAo + 4 A. + 4 A= 1 
(4.2) + 4Aa+ 16AO 413 

,4Aa + 64 AO = 

with correction term C = -4A + 256A-91 12! D 

We obtain the formula 

7 -32 7 ?900 

(4.3) -32 1000 -32 with main correction term-195 h12 12 
1365 12_! fo 

7 -32 7 

This formula is remarkably good. With the example of Part I, we have, writing 
= h2J 

1 1.2 1.2 1 
J' = 40 [ 1t2sinxsinhy dxdy = (1- cos 1.2) (cosh 1.2-1) 

0.12922 70590 73675 11602 

Formula (4.3) gives 

J' . 0.12922 70590 72834 11029 

with E = -0.012 841 00573 and C = +0.012841 01633. 

5. Five-point Formulas. The high precision of (4.3) suggests that formulas of 
lesser precision, with fewer points, may be useful. We use the first two of (4.2) 
and take one of Ao Aa, Ad to be zero. 
(i) Ao = 0 gives an eight-point formula with relatively poor precision. 

19 56 19 -300 

(5.1) 56 0 56 with main correction term - 40 -h 8Of. 9! 
19 56 19 

(ii) Aa = 0 gives 

1 0 1 ?60 

(5.2) 0 56 0 with main correction term - 3 h fo. 5 9! 
10 1 
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(iii) A# = 0 gives 

0 -1 0 ? 15 

(5.3) -1 19 -1 with main correction term +28 28 fD8fo. 
5 9! 

o -1 0 

We observe that (5.2) and (5.3) combine in the proportions : 8 to give 
(4.3), though without an error estimate! Likewise 7 X (5.2) - X (5.3) gives (B) 

112 h 8 
of Note I, and an estimate for the correction, namely - 5 9! a)8f0 when f(x, y) 

is harmonic. 
Another combination, that of (5.2) and (5.3) in equal proportions, gives a 

small correction term: 

1 -4 1 -120 

(5.4) -4 132 -4 with main correction term - 4 8o 
5 9!i 

1 -4 1 

Again 4 X (5.2) - 3 X (5.3) gives small multipliers: 

1 3 1 -15 

(5.5) 3 -1 3 with main correction term 212 h 8 
5 9! 

1 3 1 

Evidently (4.3) is most precise, but simultaneous use of (5.2) and (5.3) gives 
an idea of the precision attained, and readily yields the better result if desired. 
Formula (5.5) might be helpful with desk computing, but (5.1) has little to recom- 
mend it. 

Numerical results for some of the formulas using the example of ?4 are as follows: 

Formula Result 1' 1010 X E 1010 X C 

(5.1) 0.12922 72986 +2395 -2396 
(5.2) 0.12922 70974 +383 -383 
(5.3) 0.12922 70255 -336 +335 
I(B) 0.12922 71932 +1341 -1342 

(5.4) 0.12922 70615 +24 -24 

6. General n; 2n2 + 1 Points. We consider now the n-dimensional case, n > 3, 
using lattice points 0, ae(1), A(1). In this case the term in 36fo is relevant, and the 
Q fo term will appear in the error, except when n = 3. 

We equate coefficients of fo, XA4fo, 36fo in the expansions resulting from use of 
(2.1), (2.31)-(2.33) in (4.1). We obtain 
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Ao + 2n Aa + 2n(n-1) AO 1 
(6.1) 4 - 4Aa- 8(n-4) AO =4 

,+ 6A+ 12(n-16) An,= "I 

while 

C = {4Aa + 8(n + 6)A 165; 8! 5f% ~~~ ~~ 45(8! 

+ 8Aa + 16(n-64)A + } 8Qf 45 8! 

These yield 

-61n2 + 931n + 3780 61n-496 A 61 
3780 3780 7560 

with 
o 1198 h~8f+ 3619 h 8 

C 
945 8! 315 8! ~0 

In particular 

12048 626_ 61_ (6.33) n = 3 Ao= AOAa 6= - 756 
7560 7560 76 

13056 504_ 61_ (6.34) n = 4 Ao = Aa= 504 A - 7560 
7560 7560 76 

13820 382_ 61_ (6.35) n = 5 Ao = Aa = - A3 = - ___ 

7560 7560 76 

(6.36) n = 6 Ao = 14340 Aa = - 60 A 7560 7560750 

As a numerical illustration for n = 3 we consider 

1 li~i~i" 3 5 
J= I=8I..cos - x cos y cosh - z dx dy dz 

8 8 .j1.4 4 

= sin 
3 

sin 1 sinh - = 0.9800827. 
15 4 4 

Formula (6.33) gives J . 0.9799734 with E = -0.0000109 and C = +0.0000110. 
This result is less spectacular than that of ?4, for these reasons: 

i) In ?4, h = 0.6, here h = 1, and the correction term in (4.3) contains a high 
power of h. 

ii) The correction term in (6.2) is of order h8, that in (4.3) is of order h12 

iii) The higher the number of dimensions, the more individual terms there are in 
8f, D'2f, etc. In (4.3) there is only one term in D'2f, in (6.33) there are 9 in 

5)8f. 

iv) The effect of larger interval h is enhanced by the use of the factor 4, which 
exceeds unity, in cosh 4 z; this is only partially balanced by the factor cos 4 x. 

In spite of these points, the formula (6.2) seems a good one. 

7. Quadrature over a Square; Specially Chosen Points. Since the expansions 
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of ?3 involve only cross-differences D4fo, it appears likely that use of sets of diag- 
onal points f3 will be more profitable than attempts to use sets a. It turns out that 
sets 0, a (a), ,8(b) and 0, a((a) both fail to give real values of a if maximum preci- 
sion is sought. On the other hand, we can get several formulas making use of any 
number of sets fl(bp), p = 0(1)r, both with and without the point 0. 

We start first with r sets #(b,), without the point 0. We have to find the 2r 
constants App, bp satisfying the equations 

r 
41-1 

(7.1) 4A op p 4As-bS - = C081, s = 1(1)2r 
P==l (2-s -1) (4s - 3.) - 

obtained by substitution of (3.5) to (3.7) in 

(7.2) J = Z APf(d[bph, ?bph) 

and equating the coefficients of the first 2r coefficients of D4. Sundry powers of 4 
have been cancelled. 

By familiar arguments, the bp4 are roots of the equation 

1 X X2 .. . X 

CO C, C2 . CT 

(7.3) C1 C2 C3 ... C+1 = 0. 

CT Cr-1 CT-2 ... C2r-1J 

These are the orthogonal polynomials for the weight function w(x) = (x-314 X-12) 

and range 0 < x < 1. The first two are 

-15x-1 = 0 

(7.4) { 
819x 2- 438x + 11 = 0. 

The main correction term is obtained from the next power of D4 and yields 
r 

8' 24rh~r 
(7.5) C = C2r-E 4AP (8)p A 

If the point 0 is included, our equations (7.1) are replaced by 
r 

Ao+4ZAnp=1 
(7.6) P=1 

4AOP bP -(2s + 1)(4s + 1) = C8, s = 1(1)2r 

and the bp4 are roots of the equation 

1 X X ... X 

C0 C2 C3 ... C+1 

C2 C3 C4 ... C+2 = 0 

10r+1 Cr+2 Cr+3 ... C2T 
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which are the orthogonal polynomials for the weight function w(x) = 2(x14 -x1/2) 

for the range 0 < x < 1. The first two are 

[3x - 1 - 0 
(7.8) 

t17017x2 - 13650x + 1745 = 0. 

The main correction term is this time 
/r 4r+2 8r+4 

(7.9) C = C2tl- E 4Ao bp ?+4) -2 h? 8r+1Afo. P=1 ~ /(8r + 48! 

In each case the coefficients Ar may be computed by standard methods. 

8. Formulas for r = 1. These have 4 and 5 points respectively 

1 _ 4 64 h85)8 (8.1) A= b 15-'4 C =fA 4 ~~~~~225 8! 

4 1A3" 2816 h 12D12 (8.2) Ao = - A =- b = 31 C = 1 1 fo 5 20 12285 12!fo 

Written out in full: 

(8.3) J = 'I = -4f(15-1/4, 15-/4) + f(-15-"/4 15-1/4) 

+ f(15-/4, -15-/4) + f( - 15-114 1571/4) 

(8.4) J = 'I = 5f(0, 0) + Jf{f(3- 4, 3-114) + f(-3-1/4 3-1/4) 

+ f(3"4, -3-1) + f( 
1 

-311)} 

As a numerical test use 

1 II'' 
= I = 4 f f cos x cosh y dx dy = sin 1 sinh 1 = 0.98889 77057 62865. 

Formula (8.3) gives 0.98889 06525 with 

E = -0.00000 70533 and C = +0.00000 70547 

and formula (8.4) gives 0.98889 77062 41358 with 

E = +0.094 78493 and C = -0.094 78543. 

9. Formulas for r = 2. These have 8 and 9 points respectively 

bi = 0.40316 26030 59346 89754 AO, = 0.22912 30654 28169 97222 
(9.1) 

b2 = 0.84439 75319 23478 74713 AO, = 0.02087 69345 71830 02778 

with main correction term 54592 x 261 hNVf0 
57014685 16! 

bo = 0 Ao = 0.69521 80834 12925 81989 

(9.2) bi = 0.63205 02078 18796 99524 AO, = 0.06686 42185 46105 38162 

b2 0.89531 63791 24106 97730 A02 = 0.00993 12606 00663 16340 
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with main correction term 1832 X 24 h2O 
78975897 20! 

For 

J = i L B cos x cosh y dx dy 

formula (9.1) gives 0.98889 77057 62853 38396 with 

E = -o.013 1171243 and C = +0.0'31171555 

while formula (9.2) gives 0.98889 77057 62865 09647 with 

E = +0.0199 and C = -0.01990. 

With formula (9.2) we find approximately 0.82447 37090 77903 16756 for 
1 2 2 

L2 2 cos x cosh y dx dy = sin 2 sinh 2-. 0.82447 37090 77809 15433 

with E = +0.0139401323 and C -0.0139406250. 
These formulae clearly have high precision, even with considerable values of h. 

10. Quadrature over a Cube; Specially Chosen Points. The search for such 
formulas is more difficult in 3 or more dimensions. It seems that one or more extra 
available constants are needed in order to obtain real points. We shall not pursue 
this, but give one simple formula for three dimensions. 

We find nothing convenient by use of points a(a), with or without 0; likewise 
0 with f3(b) fails to give real points. We can, however, use 12 points d3(b) alone. 
We have then to satisfy 

r2n(n - 1)A#= 1 
(10.1) 

t8b4(4-n)A = A, where n=3. 

This yields b = (2/5)"'4= 0.79527 07287 67051 AO = 1/12 

with main correction term 

C= (156 b6Ap + 21) 61 36fo = 0.005626hki6f0. 

With the example of ?6, with integrand cos 3x cos y cosh IZ (10.1) gives 
J . 0.97519 with E = -0.00489 and C = +0.00494. 

The only formula found that allows for the term 3 6fo and has an error of order 
h8 is (6.33)., which needs 19 points. It is evident that further search is needed. 
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